Los aerogeneradores de los ’80 tenían potencias que hoy parecen ridículas: entre 20 y 50 kilovatios por pieza. Un cuarto de siglo más tarde, estas máquinas son regularmente 100 veces más
potentes, y muchísimo mayores en tamaño, aunque mucho más silenciosas y durables.
La expansión del mercado eólico europeo significó fuertes de economías de escala en todos los componentes, lo que permitió bajar los costos desde casi 3000 dólares por kilovatio instalado, cifra de principios de los ’80, al rango de hoy, estimable entre 950 y 1300 dólares según el tipo y tamaño de máquina.
Como datos, entre el cubo de la hélice y la salida eléctrica de sus bornes, las turbinas de hoy son tan eficientes que apenas pierden el 7% de la energía que captan del viento. La eficiencia aerodinámica de las palas fue subiendo hasta aproximadamente el 50%, ya muy cerca del tope teórico, o límite de Betz, imposible de alcanzar en la práctica. Debido a esta suma de eficiencias y a la evolución del diseño mecánico y estructural, las máquinas de hoy son bastante silenciosas, pese a su tamaño.
Dado que el viento es impredecible, a diferencia del consumo eléctrico, a principios de los ’80 se decía que el sector eólico jamás podría aportar más del 10% de la corrie
nte circulante a ninguna red, porque de otro modo la desequilibraría.
Hoy se admiten “factores de penetración” mucho mayores: en Dinamarca, el aporte eólico es de un 17% teórico, y en Alemania y España, de un 5%, sin que haya habido problemas de estabilidad en las redes. Decimos “penetración teórica”, porque Europa funciona como una única red eléctrica integrada, donde la participación real de los sistemas eólicos alemanes, daneses y españoles se diluye, y resulta mucho más baja.
Sin embargo, es en las redes cerradas de algunas islas, o en redes locales con “conexión débil al gran sistema interconectado, donde se percibe que las máquinas eólicas pueden penetrar una grilla hasta en un 20% en términos de potencia, y sin ninguna merma de la calidad eléctrica.
Esta tecnología tiende al gigantismo. En las granjas “off shore” de Europa se ven molinos de 100 o 120 metros de altura, con hélices que barren lentamente círculos de 80 y hasta 100 metros de diámetro, y generan hasta 5 megavatios por unidad, aunque lo habitual son los 2,5 o 3 megavatios.
Esta tecnología tiende al gigantismo. En las granjas “off shore” de Europa se ven molinos de 100 o 120 metros de altura, con hélices que barren lentam
ente círculos de 80 y hasta 100 metros de diámetro, y generan hasta 5 megavatios por unidad, aunque lo habitual son los 2,5 o 3 megavatios.
Los aparatos contemporáneos, por su misma espectacularidad, generan algunas preguntas inevitables:
¿Cuánto duran?Pese a su creciente tamaño, que las somete a cargas cada vez mayores en toda la cadena cinemática, las turbinas se han vuelto crecientemente confiables. Cada una es una central eléctrica autónoma e inteligente, que rinde corriente de “calidad de red” y resulta capaz de atenderse sola en condiciones muy cambiantes, aunque también puede ser monitoreada y dirigida por un humano desde una sala de control remota en cualquier punto del globo. El factor de disponibilidad de estos aparatos hoy llega al 98%.
La vida útil de diseño que adoptan todos los fabricantes es de 20 años, lo que para las para las condiciones operativas europeas, mucho menos ventosas que las de Argentina, supone unas 114.000 horas de funcionamiento óptimo, sin que tenga que int
ervenir personal fuera del mantenimiento normal, la supervisión y el reemplazo programado de partes consumibles (tarea esta última que se realiza en general
aprovechando alguna parada forzosa por falta de viento).
En comparación, un buen automóvil contemporáneo dura unos 150.000 kilómetros, equivalentes a 4 meses de funcionamiento continuo, y no puede operar solo. Y estamos comparando una tecnología novísima con otra que lleva más de un siglo de desarrollo tecnológico.
¿Por qué tienen la forma que tienen, y con qué se construyen?Entre los años ’70 y ’80 la industria alemana y la dinamarquesa, probaron los diseños y materiales que hoy se muestran como dominantes, y que adoptaron sin retaceos los constructores de la “segunda ola”, es decir españoles, indios y chinos, promediando los años ‘90.
En materia de materiales, el componente más crítico y susceptible a fatiga por las enormes cargas variables que recibe, son las aspas de hélice. Se ensayó hacerlas de muy distintas cosas: las hubo de aluminio (de escasa resistencia a la fatiga de materiales), luego de acero (demasiado pesado), y también de combinaciones de maderas y epóxidos, como las estadounidenses Gougeon. Lo que finalmente se estandarizó fueron los plásticos reforzados con fibras, en general de vidrio.
El primer plástico fue el poliéster. Este material tan “de astillero” está siendo, a su vez, desplazado por las resinas epóxicas infundidas sobre fibra de vidrio, en busca de mayor ligereza. Todos estos compuestos ofrecen gran resistencia con escaso peso, y tienen como único inconveniente que requieren de una fabricación más artesanal, pieza por pieza, que verdaderamente seriada, lo que genera muchos puestos calificados. Por ello en el hemisferio norte, la alta incidencia del salario en una pieza tan intensiva en trabajo hace que la hélice represente el 20% del costo total de la turbina.
Hélices más veloces significan siempre menos cargas sobre los trenes de transmisión, pero más ruido. Y como a las turbinas marinas se les permite ser más ruidosas que las terrestres sin infringir leyes de impacto ambiental, se les da por diseño mayor velocidad de giro y palas más largas. Por eso ya se ven máquinas off-shore con hélices que supera
n los 100 metros de diámetro, las que llegan a la frontera de los 5 megavatios.
La evolución hacia palas cada vez más largas y flacas obliga a echar mano de materiales aún más resistentes que los actuales. Así las cosas, la fibra de vidrio empieza a dar paso a la de carbono, e incluso ya se ven aspas ultralivianas y ultrarrígidas de fibra de carbono, o de compuestos de madera laminada y carbono puro.
La falta de buenos sitios ventosos en tierra europea expulsa las turbinas mar afuera. Y como la necesidad es la madre de la invención, aunque los parques marinos tienen menos del 1% de la potencia eólica instalada en el Viejo Continente, la investigación y desarrollo hoy se concentran en ese rubro: molinos en aguas someras. Por ahí pasa el futuro tecnológico de la industria.
¿Por qué todos los fabricantes hoy usan hélices de tres palas?
En el fin de siglo que pasó se experimentó con todo tipo de hélices, monopala, bipala y tripala. Entre las primeras en los ’80 se destacaron las Riva-Calzoni y las Messerschmidt, con perfiles compensados por contrapesos. Eran eficientes pero vulnerables a vibraciones parásitas, principalmente porque el perfil alar generaba mucho empuje axial y el contrapeso, casi nada. Aunque el rotor monopala tuviera masas balanceadas por diseño, se descompensaba en momentos y fuerzas axiales al girar. Estas extrañas máquinas encontraron pocos adeptos, por demasiado veloces y ruidosas, pero sobre todo, porque se autodestruían.
Las hélices bipala y tripala pueden competir entre sí por sus prestaciones, sin ventajas decisivas para ninguna. En realidad, en grandes turbinas, la hélice tripala es algo mejor por su momento de inercia constante respecto del eje azimutal. Dicho de otro modo, cuando la máquina gira sobre su eje vertical como una veleta para encarar el viento, la tripala no pierde su suavidad de rotación.
Lo interesante es que el público rechazó tanto las hélices bipala como las monopala por su impacto visual: resulta crispante ver un gran parque eólico con decenas de hélices de estos dos tipos girando en forma aparentemente irregular y espasmódica.
Subrayamos lo de “aparentemente”. Por asuntos más ligados al funcionamiento de la corteza visual humana que al de las máquinas, el movimiento de una granja parece más armónico cuando las hélices son de tres palas que cuando son de dos. Y como las turbinas de hoy son unos tremendos hitos en cualquier paisaje, su aceptabilidad para el ojo no es un asunto menor.
Añadir palas es añadir costos, porque son muy caras. Y se probó que más de tres palas no implica una mejor cosecha eléctrica, sino a veces lo contrario, por interferencias aerodinámicas entre esos perfiles alares. Así las cosas, la hélice tripala llegó, al parecer, para quedarse.
¿Por qué todos los fabricantes construyen máquinas de eje horizontal?
Junto con la imposición de las tripala de eje horizontal llegó la desaparición del concepto Darreius, la curiosa turbina de eje vertical y perfiles de forma elíptica, cu
yo movimiento parece el de una batidora de huevos.
Las turbinas Darreius son omnidireccionales: no dependen de poderosos mecanismos activos para girar sobre su azimut y encarar el viento. Pero tal ventaja resulta pequeña frente a sus deficiencias: la escasa eficiencia de los perfiles arriba y abajo, en las zonas en que son más lentos porque abrazan el eje, y el gran peso que soportan la transmisión y el generador, en la base. Flowind, el último fabricante de estos curiosos sistemas, desapareció del mercado promediando los ’80.
¿Entonces, todas las turbinas de los ’80 a hoy son iguales?No. Son sólo muy parecidas por fuera, y eso para el ojo inexperto. Como las turbinas son aparatos longevos, en este momento hay varias “familias tecnológicas”, en algunos casos derivadas unas de otras, en coexistencia simultánea en los países avanzados. Pero dentro de una arquitectura básica común, la del aparato tripala con eje horizontal, hubo cambios evolutivos notables en dos grandes frentes del diseño: el control de la velocidad de las hélices, y la transmisión de su movimiento a los generadores.
La velocidad de hélice debe ser controlada siempre. El problema a evadir en cualquier turbina es que los vientos demasiado fuertes no hagan pasarse de vueltas al generador, so pena de sobrecalentarlo y quemarlo, con el riesgo adicional de sobrecargar los componentes mecánicos y estructurales, además del de transgredir los límites de tensión y frecuencia en los bornes de salida. En principio, se trató de evitar todo esto manteniendo fija la velocidad de la hélice, sin importar la del viento, mediante controles aerodinámicos, y luego “de red”.
Promediando los ’80, el molino típico que uno encontraba en el mercado tenía unos 200 kilovatios, era probablemente danés y tenía hélice con aspas de paso fijo. La velocidad de giro de la hélice la regulaba la frecuencia de la red eléctrica, manteniendo prácticamente constante la velocidad del rotor aunque el viento se acelerara mucho. Al frenarse “por efecto de red”, la hélice entraba en pérdida, es decir, las aspas perdían sustentación en el viento, lo que evitaba un incremento de RPM. La idea erizaba un poco a los aerodinamistas provenientes del campo aeronáutico, donde un ala o los álabes de una turbina aeronáutica que entran en pérdida son siempre malas noticias.
Pero en el extraño mundo de las turbinas eólicas el concepto funcionó bien: se ganaba simplicidad al evitar un lazo de control de velocidad, y un buen número de piezas móviles.
Sin embargo, este diseño llamado “Danés” o “Stall” (pérdida aerodinámica), pasó, tiempo después, por una fase de perfeccionamiento, el “Active Stall”, en que se añadía un segundo mecanismo tendiente a conservar fija la velocidad de la hélice y aumentar la eficiencia de la máquina: el “pitch”, que consiste en permitirle un “paso variable” a las aspas, es decir, un cambio –muy limitado- de su ángulo de ataque respecto del viento para mejorar y disminuir su sustentación.
Las Active Stall mejoraron la cosecha de energía y las turbinas pudieron pasar el techo de 1 megavatio de potencia, con el cual las anteriores tenían problemas. Entre tanto, mientras el diseño migraba hacia molinos cada vez mayores, la obsesión de los fabricantes por fijar en un número exacto de RPM los giros de la hélice cedió paso a la evidencia de que la transmisión sufría menos y la cosecha mejoraba si, por mecanismos de “resbalamiento”, se dejaba la fluctuar un poco en velocidad la hélice.
En la nueva visión de las cosas, lo único que había que dejar constante, sí o sí, era la frecuencia de la corriente entregada a la red, pero eso se podía lograr por métodos electrónicos, más que mecánicos, con convertidores de frecuencia. El problema, al principio, fue que en los ’80 la electrónica de potencia era carísima. Afortunadamente, su precio desde entonces ha bajado en flecha.
Casi simultáneamente, el control de velocidad por “stall” fue perdiendo terreno frente al control por “pitch”, con aspas que podían cambiar fuertemente su ángulo de paso. Este sistema probó ser superior de un modo puramente empírico, por la mejor forma de la “curva de potencia” a la hora de comparar la cosecha energética.
Y simultáneamente, aparecieron los molinos de dos generadores, o con uno solo pero capaz de operar a dos velocidades distintas, para lo cual usan, según el caso, todos sus pares de polos o sólo algunos de ellos, en aras de respetar la frecuencia de salida. Con este tipo de generadores, las viejas máquinas Stall lograban competir en cosecha de energía con las “pitch”, sus sucesoras.
A todo esto, la experiencia con hélices de velocidad y paso variable dejó otra enseñanza fundamental. Al dejar fluctuar de modo importante la velocidad de la hélice, resulta innecesario estar haciendo ajustes constantes de “pitch” o paso para intermediar entre las variaciones del viento y la constancia de frecuencia exigida por la red. Los actuadores de regulación de “pitch”, sobre todo los hidráulicos, suelen requerir de bastante mantenimiento. Lo mejor es que trabajen espaciadamente, en lugar de todo el tiempo.
¿Entonces, cómo es el equipo moderno “estándar”?Tras tres décadas de experimentación, el aerogenerador moderno más común hoy en día tiene hélice de velocidad variable y se regula por “pitch”. Lo que se discute hoy en el gremio es si debe tener o no caja multiplicadora, asunto en el que daremos nuestra opinión más adelante.
También es un aparato de gran tamaño: se están testeando máquinas de 5 ó 6 megavatios, y tal vez aparezcan aún más potentes.
No parece haber una barrera tecnológica para ello, pero sí de costos, por el uso de materiales aeroespaciales como la fibra de carbono.
Lo claro es que ya no se fabrican equipos debajo del megavatio unitario, salvo en el Tercer Mundo, adonde ya algunos fabricantes europeos empiezan a montar fábricas para producir, a bajo costo, sus viejos modelos de fines de los ’80.
Dicho esto, hay que añadir que los grandes módulos de potencia de los aparatos de última generación no obedecen a delirios de grandeza de los fabricantes, sino a la economía de escala: en Europa ahora lo eólico compite casi sin protección contra las fuentes convencionales de electricidad.
Tras dos décadas de subsidios de lujo, el público europeo empieza a exigir que la industria vuele sola, sin su paracaídas de privilegios. Y en los escasos “super-sitios” del Viejo Continente donde se consiguen velocidades anuales de viento de 10 metros por segundo, esto está sucediendo: el costo del kilovatio eólico está arañando el del térmico
El hartazgo del europeo tipo ante el gigantismo de estas estructuras llega a la resistencia a la instalación de más turbinas en los campos y costas: en Dinamarca ya no se puede erigir nada en tierra que sea mayor de 1 megavatio. Los desarrollos de parques hoy son casi todos “off shore”, y llegan a estar hasta 30 kilómetros mar adentro, donde la gente común puede olvidarse de que existen.
En esas turbinas marinas, el tamaño colosal es forzoso: el costo del Balance of Plant, es decir el del cableado submarino a tierra más el anclaje de cada torre en el
lecho marino, más el mantenimiento, se vuelve desmesurado. No hay más remedio que bajarlo dividiendo la potencia total de un parque entre muy pocas unidades… pero muy grandes.
Y es ahí donde la industria está chocando al menos con un límite técnico aparente, insinuado entre los 5 y 6 megavatios: ¿Cuánta carga puede levantar el helicóptero más grande? ¿Cuán larga puede ser la pluma de una grúa marina? Tales son los asuntos que se barajan al montar la góndola de un “MultiMega” en un sitio “off-shore”.
Para montar las turbinas "MultiMega", hubo que desarrollar toda una nueva generación de grúas terrestres y marinas. El mar, parece, será la frontera que produzca los próximos cambios, evolucionarios o revolucionarios, en arquitectura, materiales y montaje.
Fuente:
http://www.invap.com.ar/